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Abstract. Many current high level languages have been designed with support for con-
currency in mind, providing constructs for the programmer to build explicit parallelism
into a program. The EuLisp threads mechanism, in conjunction with locks, and a generic
event waiting operation provides a set of primitive tools with which such concurrency ab-
stractions can be constructed. The object system (TELOS) provides a powerful approach
to building and controlling these abstractions. We provide a synopsis of this ‘concurrency
toolbox’, and demonstrate the construction of a number of established abstractions using
the facilities of EuLisp: pcall, futures, stack groups, channels, CSP and Linda.

1. Introduction

Programs for modern computer systems must frequently address issues re-
lating to concurrency. These programs are becoming more commonplace,
especially at applications programming level, as the availability of multiple
processors and networked computer systems increases. Recent high-level
programming languages offer concurrency features to support the program-
mer in this task.

EuLisp was designed with concurrency features from the outset. In the
Lisp tradition, the intention was not to enforce a particular concurrency
model, but rather to provide the primitive tools and means of combina-
tion so that programmers (and library-writers) could build the appropriate
abstractions for the task at hand.

Programming with multiple threads of control within a single address
space is emerging as an important and increasingly common-place paradigm
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in modern computing. We note two reasons:

• Solutions to a large class of programming problems often fall natu-
rally into the thread model, particularly programs which respond to
asynchronous events. Many programs associated with user interac-
tion and with networks fall into this class, hence this programming
style is becoming more common as these application areas expand.

• Programs written with threads can be executed on uniprocessor or
multiprocessor hardware (perhaps with distributed shared memory).
In the multiprocessor case, the threads can execute on any available
processor. This promotes portability with the potential for making
good use of the available resources, and provides a degree of scala-
bility. In this way, threads provide a means to harness the power of
modern computing platforms.

It is for these reasons that EuLisp adopted a threads mechanism as its
primitive concurrency model. The importance and utility of a thread model
is demonstrated by the adoption of threads in recent operating systems,
for example MACH, DCE[19], Chorus[20]. This trend will facilitate the
implementation of EuLisp systems on new platforms.

In contrast with many other concurrent lisp languages[21][8], EuLisp

attempts to provide a model of concurrency which can be extended by effi-
cient implementations of concurrency abstractions which are not explicitly
supported by the kernel, such as futures and Linda. The thread model is
quite general, and does not require pre-emptive scheduling or true multi-
processing, which may be infeasible on some systems. Even without this
form of scheduling, the thread model can be used to create useful abstrac-
tions that use separate threads as a problem-solving aid, rather than a
means of obtaining concurrency.

The EuLisp object system, TELOS[2] can be used in order to provide
a degree of reflectiveness and extensibility in the thread model — one can
effectively provide a protocol for a particular operation, and a simple imple-
mentation, and allow the user to extend or specialise it. This specialisation
allows the new abstractions to be more of an integrated part of the existing
kernel, rather than an additional library with independent ideas about how
to create and manipulate threads — we illustrate this later in the Linda
section.

In this paper we give an overview of the EuLisp thread model (sections 2–
4) and give reasons why the particular primitives have been chosen. In
subsequent sections we discuss several different parallel abstractions and
their realisation in EuLisp. Finally (section 12), we compare these with
existing languages.
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2. The EuLisp threads interface

The EuLisp definition[14] allows for the concurrent execution of expres-
sions through the use of threads, and atomic communication and mutual
exclusion via the use of semaphores. Threads are instances of an abstract
data type which represent a flow of control in a program, and they interact
with other threads via shared memory. When a thread is created, an initial
function is supplied; arguments are provided when the thread is started,
and the thread executes the application of the initial function to these ar-
guments. When the function returns, the value of the thread is set to the
return value of the function, and the thread completes normally.

The following interface is provided for the creation and control of threads.

<thread> A class object representing the class thread. This object is pre-
installed in the TELOS hierarchy.

(make <thread> ’init-function function) Allocates, initializes and re-
turns a thread with function as its initial function.

(thread-start thread . args) Starts a thread by applying the initial func-
tion to the arguments args.

(thread-reschedule) Indicates that the current thread is prepared to
cede control to another thread.

(thread-value thread) Blocks the current thread until thread has com-
pleted, and returns the result of the application of the initial function
to the arguments passed by thread-start.

The definition does not force a conforming EuLisp implementation to
adopt any particular scheduling policy, allowing implementors to choose a
suitable one for the hardware and operating system platform they are tar-
geting. A portable EuLisp program must therefore not assume a particular
scheduling policy itself; for example, assuming a time-slicing scheduler and
therefore never explicitly calling thread-reschedule may cause the pro-
gram to fail on a scheduler which lacks preemptive tasking, where threads
must voluntarily give control back the the scheduler.

A fairness guarantee also needs to be stated. Due to the possibility
of a host operating system handling the execution of threads[5][1], it is
impossible to make a strong guarantee.

However a sufficient, although weak, guarantee is that if a thread resched-
ules infinitely often, then every other ready thread will also be scheduled
infinitely often.
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2.1. Condition handling

Conditions raised on a thread may be handled by any condition handlers
placed in the dynamic extent of that thread, or by a default handler when
no other handlers are present on the thread.

The default handler causes execution on the thread to be aborted and
the thread to signal an error on any thread that tries to obtain its value.

A mechanism for threads to raise conditions on other threads is also
provided. The function signal takes an optional thread argument, and
will cause a condition to be raised on that thread. The condition must be
an instance of <thread-condition>, itself a subclass of the <condition>
class. This restriction is made so that a handler function for externally
signalled conditions need only deal with a well-defined subset of all possible
conditions. This enables a handler to distinguish between an internal and
external signals. In addition, it would be possible for one thread to cause,
say, a division by zero condition to be raised on some other thread — in
general, this does not seem to be desirable behaviour.

A conforming implementation guarantees that after the condition has
been registered with the target thread, it will be signalled on that thread no
later than when the thread is next rescheduled for execution—no guarantee
is made that the condition will be raised immediately, even if the thread
is currently executing, due to the difficulty of maintaining such a strong
guarantee in a distributed environment. The normal procedure is that
conditions are processed by threads in registration order.

3. Semaphores

Semaphores are provided for synchronisation between threads and mutual
exclusion. The following primitives are provided.

<lock> A class object representing the class lock. This object is pre-
installed in the TELOS hierarchy

(make <lock>) Allocates and initializes a new (open) lock.

(lock lock) Perform a P operation [6] on lock.

(unlock lock) Perform a V operation on lock.

An implementation is free to choose its strategy for the locking operation:
for example blocking a thread on a lock until it becomes free or busy waiting
by rescheduling a thread until the lock becomes free.
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4. Wait

The generic function wait has standard methods defined for a stream and
for a thread. The purpose of wait is to enable the portable implementation
of event-driven programming by allowing programs to wait on events.

The method for threads takes a thread to wait on and a time-out period
and blocks the current thread until the time-out period has elapsed or the
thread being waited on has become determined. A thread is determined
when it has either finished normally or has had a condition handled by the
default handler. The method returns true if a thread became determined
(or was already determined) during the call and () otherwise. A call to
wait with a zero time-out period is equivalent to a poll to see if the thread
is determined.

The definition does not specify how the method should be implemented,
and, like semaphores, a wait could be performed using busy waiting or a
blocking mechanism.

This concludes the discussion of the EuLisp thread model. The rest of
the paper is concerned with its use in the development of various parallel
abstractions.

5. Pcalls

Pcalls (parallel calls) [8] allow functions to be called with their arguments
evaluated in parallel. Thus (pcall + 1 2 3) is equivalent to (apply +
(list 1 2 3)) except all the arguments to pcall are evaluated in paral-
lel, including the function argument. It is the programmer’s responsibility
to decide when to use this construct, and he/she should be aware of the
amount of potential parallelism its use could release (possibly too much)
and whether side effects in the parameter expressions will behave as ex-
pected when evaluated in parallel.

Modelling this construct using threads splits the pcall into three distinct
phases:

1. Spawn threads to evaluate each argument;

2. Collect the results of the threads;

3. Perform application.

These phases can be coded using macro and function definitions as shown
in Figure 1.
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(defmacro pcall args
‘(let ((all-args (map thread-value (make-threads ,args))))

(apply (car all-args) (cdr all-args))))

(defmacro make-threads (args)
‘(list

,@(map
(lambda (a) ‘(make <thread> ’init-function (lambda () ,a)))
args)))

Figure 1: Macro implementation of pcall

6. Futures

Futures[8] introduce the opportunity for concurrent evaluation of expres-
sions whose results will not be needed until some time in the future.

The form (future expression) returns a place holder which is a handle
on the future. In MultiLisp, once a future has been evaluated the place
holder is replaced with the value of the expression, and if the value was
requested before the future has been determined, then the requesting thread
is blocked and waits for the future to finish evaluating.

EuLisp has no support for replacing one object with another, as Multi-
Lisp does when replacing place holders with a future’s value, and so this
transparent mechanism cannot be reproduced. Instead a function is pro-
vided which the user can use to obtain the value of a future. This places
a restriction on the user who must know which parameters are futures and
explicitly request their values.

Using EuLisp’s generic functions, this explicit “touching” of futures can
be hidden in some functions, for example the generic function binary+ can
be given a method which specialises on and touches futures, thus allowing
the + function to handle futures invisibly. However, this is not a universally
attractive solution because of the vast number of additional methods that
must be defined—and the likelihood of forgetting some.

A näıive implementation of futures maps simply onto the EuLisp thread
primitives. A future can be represented as a thread evaluating the future
expression, in which case a function to get the value of a future maps
directly to thread-value. However, it is preferable to make futures into
a class of their own; a possible implementation of eager task creation is
shown in Figure 2.

Many authors have noted that the eager future model, where a process is
spawned every time future is called, rapidly paralyzes the computational
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(defmacro future (exp)
‘(let ((future-thread

(make <thread>
’init-function (lambda () ,exp))))

(thread-start future-thread)
(make <future> ’future-thread future-thread)))

(defun future-value (future)
(thread-value (future-thread future)))

Figure 2: Eager futures

resources of most systems which become occupied with future management
rather than future execution. This problem and policies for future creation
are analyzed in detail in [12]. There, it is shown that the simple mecha-
nism of not creating processes when the number awaiting execution exceeds
some threshold (load based partitioning) can lead to deadlock. The novel
alternative put forward in [12] is lazy task creation, where it is the parent
that might be executed on another thread, rather than the child. A sketch
of this tactic is given in Figure 3.

(defmacro future (exp)
‘(let/cc k ;;rest of the program...the parent

(let* ((child-result
(make <placeholder>)) ;;for child → parent communication

(parent-task ;;object for stealing
(lambda ()
(thread-start ;;start thread to execute parent code
(make <thread> ’init-function k)
child-result)))) ;;passing the placeholder

(enqueue (steal-queue (current-thread)) parent-task)
((setter value) child-result ,exp) ;;evaluate exp...the child
(if (dequeue (steal-queue (current-thread)) parent-task)

(k child-result) ;;carry on because parent was not stolen
(suicide)))))

Figure 3: Lazy task creation

There are a couple points to be made about this sketch: it assumes that
dequeue is an atomic operation; it requires that a continuation created on
one thread can be called on another. This last part is the more significant
since, at present, this is precluded by the EuLisp definition. The reason
is that multiple threads invoking one continuation would cause expressions
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on that continuation to return more than once, making the implementation
of EuLisp more complex than we would like. However, it would not be
necessary to allow general cross-calling of continuations, just that one can
be used as the init-function value when making a thread.

(defmethod send-channel ((chan <channel>) obj)
(lock (chan-buffer-guard chan))
(add-item (chan-buffer chan) obj)
(unlock (chan-buffer-guard chan)))

(defmethod read-channel ((chan <channel>))
(let ((read-val nil))

(lock (chan-buffer-guard chan))
(setq read-val (remove-item (chan-buffer chan)))
(unlock (chan-buffer-guard chan))
(if (value-p read-value)

(value-of read-val)
(progn (thread-reschedule)

(read-channel chan)))))

Figure 4: Channel operations

7. Channels

Channels [9] [23] provide an abstraction allowing threads to communicate
objects. Communication can either be synchronous or asynchronous.

A channel is modelled using a structure containing the following data:

• A buffer to store objects before they are collected. This could be
bounded or unbounded.

• A semaphore to guard access to the buffer resource.

Sending an object down a channel causes that object to be added to the
channel’s buffer. The sending thread then proceeds. In a bounded buffer
the sending thread will block if the buffer is full. It will continue once an
object has been removed from the buffer.

Retrieving an object from a channel is the reverse process. If the chan-
nel’s buffer is empty then the receiving thread will block until data has
been sent to the channel. When an object is present it is removed from
the buffer (FIFO ordering) and the receiving thread proceeds. The code
for each of these operations appears in Figure 4.
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(defun context-switch (sg)
(let ((csg *current-stack-group*))

((setter status) csg ’:resumable)
((setter status) sg ’:active)
(setq *current-stack-group* sg)
(unlock (semaphore sg)) ;;unblock someone else
(lock (semaphore csg)))) ;;block self

Figure 5: Stack group context switch

8. Stack groups

Stack groups offer a similar abstraction to coroutines. They allow multiple
processes to be defined although no concurrency occurs. Stack groups sim-
ply pass control around between themselves. This means that they do not
use an underlying scheduler, although one of the stack groups may have
that role [22].

As with most other control constructs, stack groups can be modelled
using continuations. However in EuLisp this is not feasible since full con-
tinuations are not supported—instead, we have used threads, which are a
packaged and simplified form of continuation. A stack group is represented
by a structure containing the thread which runs the stack group’s com-
putation, a semaphore which is used to control whether the stack group
is executing, the value returned when a stack group has completed, the
resumer of the stack group (see below) and the status of the stack group.

To create a new stack group the macro make-stack-group takes three
arguments:

1. A string containing the stack group’s name;

2. A function the stack group is to perform;

3. The argument(s) of the stack group function.

The macro translates into code which allocates a new stack-group struc-
ture and fills in the required slots. The new stack group is then allowed to
run, and it immediately blocks, ready to have control passed to it and begin
executing the stack group function. There are a number of ways of passing
control between stack groups but all methods involve a context switch. This
involves unblocking the stack group we wish to resume and blocking the
current stack group. The code for a function implementing this operation
is given in Figure 5. There are three means for the programmer to switch
stack groups:
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1. stack-group-resume switches context to a given stack group passing
it a given value;

2. stack-group-funcall has the same effect as stack-group-resume
but also sets the resumer slot of the stack group it is resuming, so
that it can itself be resumed in the future by stack-group-return
(see below);

3. stack-group-return resumes the stack group which is in its resumer
slot.

All three functions set the required slots of the stack groups and call
context-switch. Finally when a stack group is finished it calls the function
end-stack-group. This sets the return value slot and unblocks the stack
group’s resumer so another stack group may execute.

As an example of the use of stack groups we show the code for the classic
“same fringe” predicate which takes two binary trees and returns true if
both trees have the same fringe (full code is given in the appendix).

9. Either

The either construct[17] (also known as the parallel-or operator) takes
two expressions and spawns two processes to evaluate them. The construct
returns when one of the processes completes, the remaining process is then
killed, and the value of the first process is returned. This construct can
be used where there is more than one method to arrive at a solution, for
example searching, and in providing fault tolerance on unreliable networks.

The either form can be implemented by a macro that performs the fol-
lowing operations:

1. Spawn two threads to evaluate the two expressions;

2. Use the generic function wait to block the current thread until one
of the spawned threads has finished;

3. Kill the thread which has not finished using signal;

4. Return the value of the evaluated expression.

NOTE — wait can be extended to wait for a set of threads by defining a new
class denoting a group of threads and adding a method for this new class. It is
then possible to define this method in terms of waiting for a single thread.

Figure 6 combines the channels primitives with either to model a simple
database retrieval system. Two database servers retrieve information from
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(deflocal data ’((apple . 20) (banana . 30) (peach . 25)))

(deflocal db1-in (make-channel))
(deflocal db1-out (make-channel))
(deflocal db2-in (make-channel))
(deflocal db2-out (make-channel))

(defun server (db input output)
(let ((message (read-channel input)))

(send output (assq message db))
(server db input output)))

(deflocal server1
(thread-start (make <thread> server) data db1-in db1-out))

(deflocal server2
(thread-start (make <thread> server) data db2-in db2-out))

(defun search (item in out)
(send-channel in item)
(read-channel out))

(defun lookup (item) ;;parallel search
(either (search item db1-in db1-out)

(search item db2-in db2-out)))

Figure 6: A fault tolerant database server

shared data. Requests can be made to lookup an item on either database,
or both. By sending the same request to both databases and retrieving the
first result returned we gain some fault tolerance—the system should still
work even if one server fails.

10. CSP

The CSP primitives, introduced by Hoare[9] can be used as the basis for a
programming language, of which the most well-known example is occam.
CSP is a process algebra with three components

• Computation

• Communication

• Process networks
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The primitives involved are very similar to those described for channels
in section 7, with some extensions:

• sending or receiving an object via a channel, with the additional re-
quirement that the sending and receiving threads must synchronize
for the transfer to take place.

• a way of creating multiple parallel threads (for the PAR construct),
and synchronising after they have completed.

• a mechanism for doing non-deterministic selection (for the ALT con-
struct).

10.1. Implementation

There were initially five macros in the occam-style extension to EuLisp:

(PAR expression*) Execute each expression in parallel.

(ALT {(IN channel var) expression*}*) Non-deterministically select and
execute an expression whose associated IN channel has a value avail-
able, with the value assigned to var. In occam, the guard can be any
boolean expression, but since EuLisp has other forms for conditional
expression, ALT has been restricted to testing for input from channels.

(IN channel {var}) Input a value on the channel, and assign the value to
the variable if it is specified, otherwise return the value.

(OUT channel value) Output a value on the channel. An error is signalled
on attempting to output a value on a channel from a thread that is
not connected to the channel.

(SEQ expression*) Evaluate each expression in sequence. This only re-
names progn, but is provided for completeness.

The creations of channels and their connection to threads must be done
manually in the EuLisp implementation, whereas, in occam, code to con-
struct the process network is generated as part of the compilation process.
We plan to address this in a future version of the CSP module. Extensions
such as those outlined above are reasonably straightforward (an exercise in
macro writing), but the resulting language is limited due to the static na-
ture of occam—it is not intended that it be possible to create an unknown
number of threads, or do non-deterministic selection on an arbitrary num-
ber of channels. This does not fit well with the dynamic nature of Lisp
and the solutions that culture develops. Thus, we indulged in some further
extensions to resolve these “shortcomings”.
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The problem of creating an arbitrary number of processes is addressed
by the FOR construct, which is similar that in occam, but has no restriction
on the types of expressions that can be used as predicates. The issue of
doing an ALT operation on an arbitrary number of channels is addressed by
the IN-FROM construct which has the syntax

(IN-FROM (chan-var value-var) chan-list expression*)

When an IN-FROM statement is executed, a channel from chan-list which
has input pending is selected non-deterministically, and the expressions are
evaluated in the current environment, augmented with chan-var bound to
the selected channel and value-var bound to the value input on the selected
channel. These two operations provide more flexibility than the standard
set above—indeed, those are implemented in terms of FOR and IN-FROM.

To illustrate the use of these extensions the appendix shows an implemen-
tation of the dining philosophers problem. The major difficulty is specifying
the network over which the processes act—as it can be created dynamically
one cannot simply compile this information into a startup function, but
must make it explicit in all parts of the program that fork threads and
create channels. Currently this is done by creating a channel which has
input and output ends, forking the new threads, and finally connecting the
ends of the channel to the new processes. Note that the code in the ap-
pendix the channels are two-way (thus both IN and OUT operations may be
executed on the same channel). Two-way channels are simply a pair of nor-
mal channels connected in opposite directions between a pair of processes.
The standard connect operations are specialised (they are implemented as
generic functions) to make the two connections, so that the user may view
the object as a single channel.

11. Linda

Linda [4] is proposed as a a coordination language suited to a wide variety of
architectures, and also is able to make the prototyping of parallel programs
easier. While there is a readily identifiable set of core operations (in, out,
rd) and data structures (pools and tuples) in the Linda model, there is still
much debate about the desirability of non-blocking operations (inp, rdp)
and the semantics of eval. For a detailed survey of this area see [3].

The EuLisp language allows one to describe Linda in an object-oriented
fashion. In this section we make a case study of producing such a system.
The resulting system1 is described in detail below. In keeping with the
lack on agreement on system aspects, we add some of our own extensions,

1called Ellis
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motivated by the fact that TELOS enables generic operations to be defined
on the Linda system’s classes.

multiple pools: In standard Linda, all operations work on a single pool.
It is far more convenient to regard pools as first class, instantiable
objects—as many others have done.

generic operations: The key Linda operators (linda-in, linda-out and
linda-read) take an additional pool argument which may be used to
specialize the operation to provide different behaviours.

generic matching primitives: The match operation on tuples in pools
is generic, so that tuple lookup can be specialized.

The original model has a potential bottleneck and a serious problem
with distributed processing in the use of a single pool2. The single pool
also creates other problems because it is like the global environment of
classical imperative languages. This leads to two phenomena:

unintended aliasing: Any tuple created by one process is visible to every
other process—the only thing preventing retrieval of the “wrong”
tuple is adherence to some globally consistent naming scheme. This
conflicts with the notion of decoupling that Linda encourages. If
two sets of tuples do not have unique names the result is unintended
aliasing.

temporal aliasing: When two components operate as producer and con-
sumer, but the former generates faster than the latter can accept and
there is an implied ordering on the tuples. One way to resolve this is
by enumerating tuples, but this is neither elegant nor general.

Both of these problems can be resolved with the help of multiple pools
which provide a mechanism akin to COMMON blocks in FORTRAN. In-
deed, all of the extensions listed above help in the production of more mod-
ular programs—in systems with single pools ad-hoc techniques are used to
ensure that no tuples in different parts of the application can be matched
using the same pattern. Also, since no process is able to operate on a pool
without access to the pool object, a malicious or incorrect process will not
be able to interfere with another’s data.

2Which is not to say that multiple pools are without problems
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11.1. Decomposition

In designing the Ellis system, as with any other library designed in an
object-oriented style[11], the implementation is split into a number of in-
teracting classes of object. For Linda, the choice of object classes are fairly
obvious.

We begin by identifying the objects used in the standard Linda model:

tuples: The objects returned by linda-in and linda-read operations.

pool: The object which stores the tuples, and processes requests for them.

The linda-in and linda-read operations require an object which is used
to match a tuple or set of tuples. We view patterns and tuples as different
entities—without this it becomes difficult to implement some of the exten-
sions described below. It also means that “wildcard values” in tuples are
no longer needed. Of course, we also need a class to model Linda processes
and some form of scheduling to mediate requests for new threads and pools
and to map Linda processes to processors. This is all provided by a sched-
uler class, which also permits the introduction of a notion of locality. A
scheduler object comprises a thread and any number of pools. When (user)
Linda processes access these pools, they come under the influence of the
scheduler which owns the pools and can be controlled by it. Although a
process can access the pools belonging to any scheduler, it is going to be
faster to access the pools of the scheduler on the same processor as the
accessing process.

Each class is freely instantiable, and may be extended via inheritance
and method specialization to support different or more efficient services as
desired.

11.2. Implementation

The initial target architecture was a shared memory system which pro-
vides subclassable threads and semaphores as part of its kernel. The same
system has also been run under virtual shared memory on the KSR-1.
While the implementations for shared and virtual shared memory (VSM)
can be the same, as we further develop systems on the KSR we expect the
lower level details to change because of the higher cost of cache misses and
process contention. Despite the simplicity of relying on cache misses to get
the right data to the right processor, it seems that high performance will
only be achievable if the VSM hardware is bypassed.

The mapping between Linda’s threads and the model provided by Eu-

Lisp is direct; a Linda thread is simply a subclass of thread with no extra
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functionality. The only remaining problem is that of choosing an appropri-
ate data structure for pools, tuples and patterns. For ease of implementa-
tion, patterns which have a symbolic key are used. This key is then used as
an index into a table of tuples stored by the pool using an eq comparison.
The tuple is then matched from the resulting list.

11.3. Extensions

Using the model described above, one can also design a system which
runs over a network of machines or processors that do not share memory
—the only place we required shared memory in the implementation above
was for storing the pool data structure. Such a system has been built in
Feel[16], using PVM[7] as the communications mechanism for a network of
Sun workstations. The actual implementation details are quite simple—the
pool structure itself is not distributed, and when a pool is passed to a remote
machine (via a remote thread starting mechanism), it is the name of the
pool and its location that is sent. If any Linda operations are executed on
the (remote) pool, then the name is interpreted as a forwarding address, and
a proxy process on the original machine carries the operation, and returns
the result. This means that we can reuse much of the above implementation,
just adding methods on the new classes of pool and tuple that contact the
appropriate server. The scheduler class is redefined as a list of schedulers
and a pool. When the creation of a new task is requested, the task is
wrapped up as a tuple and placed in the pool. When a processor becomes
idle, the associated scheduler executes a linda-in operation on the pool
to get more work. This approach provides a simple mechanism for load
balancing without high overheads.

Matching patterns to tuples in Ellis is a generic operation and, thus,
susceptible to specialization. One interesting avenue to explore is the idea
of a system which regards tuple matching as an active part of the program,
rather than the passive rôle it has in the standard Linda model. With
the help of active tuple matching, remote procedure call (RPC) could be
modelled by sending the arguments in a pattern, with the results returning
as the “matched tuple”. This form of communication has the advantage
that the receiver and sender need not be aware of each others’ locations—a
number of different servers could be capable of doing the match operation.
Also, by using a suitable distribution function, a requesting process could
attach to any of them. There are many other possibilities following from
this model that we have yet to explore. What makes this convenient is
that the same framework can be used because of the generic nature of the
system.
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12. Related work

Several languages now have support for concurrency using a threads ab-
straction.

Sting[10][15] is an efficient parallel dialect of Scheme. Threads provide an
interface to an underlying virtual machine (which may be running many
virtual processors). A number of optimizations have been made to en-
sure that the threads are lightweight including thread stealing and reuse
of thread control blocks. The EuLisp definition purposely does not state
how creation and scheduling of threads is to be achieved and an efficient
implementation could employ these techniques.

A distributed interpreter[18] for a Lisp-like language has been imple-
mented in the ICSLA project at INRIA-Rocquencourt. Following a similar
philosophy to the concurrency toolbox, it offers a single primitive responsi-
ble for thread creation and termination, another responsible for migration
of threads to other sites on a network, and an atomic exchange operation.
The language is based on Scheme and makes extensive use of first class
continuations; in contrast, the EuLisp threads model deliberately restricts
the use of continuations. The ICSLA model would itself be a suitable basis
for implementing EuLisp threads and the abstractions built from them.

Modula 3 [13] defines a threads package. Like EuLisp it provides proce-
dures to control threads and semaphores to implement mutual exclusion.
It also has a mechanism for controlling threads by allowing them to wait on
conditions which other threads could signal (either unblocking one thread
waiting on the condition or using a broadcast to unblock all threads waiting
on the condition). A similar feature could be implemented in EuLisp using
the thread primitives, semaphores and wait.

13. Conclusions and Future Work

In this paper we have given a more detailed description of the EuLisp

thread model than appears in the definition by virtue of examining a num-
ber of abstractions built from the basic components. This has the advan-
tage of providing a much better feel for the capabilities of the model, how
its definition maps to different architectures and illustrates a “rationale by
use” for why the thread model is as it is.

We also believe that the thread model, while useful on its own, is ren-
dered significantly more powerful when taken in conjunction with TELOS.
Not only are we able to model other common parallel abstractions used
in other languages as well as in Lisp, but the user may modify their be-
haviour via inheritance and specialisation, rather than using a fixed set of



18 BERRINGTON ET AL

runtime options to determine behaviour. One can also model these ab-
stractions without using the implementation, but re-use the specification
and protocol functions, and instead use a home-grown set of classes as
the implementation. Programs using the old implementation should then
map to the new without change. This should make programs using the
abstraction interface more portable.

Our future work plan envisages the expansion of the primitives described
here to work over general distributed environments. Both a virtual shared
memory and an RPC abstraction for distributed computing are being de-
veloped using TELOS.

The moral of the story is that while there is no universal solution to
the expression of parallel programs the combination of threads and an ob-
ject system with a meta-object protocol provides a rich environment for
exploring new paradigms.
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A. Larger examples

A.1. Same Fringe using stack groups

(defun same-fringe (tree1 tree2)
(let ((sg1 (make-stack-group "fringe1" fringe tree1))

(sg2 (make-stack-group "fringe2" fringe tree2))
(atom1 nil)
(atom2 nil))

(labels
((loop ()
(setq atom1 (stack-group-funcall sg1 nil))
(setq atom2 (stack-group-funcall sg2 nil))
(cond ((and (eq atom1 ’finished)

(eq atom2 ’finished)) t)
((eq atom1 atom2) (loop))
(t nil))))

(loop)))

(defun fringe (tree)
(fringel tree)
’finished)

(defun fringel (tree)
(cond ((atom tree) (stack-group-return tree))

(t (fringel (car tree))
(fringel (cdr tree)))))
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A.2. Dining philosphers problem in CSP

(defun philosophize (i lchan rchan doorchan)
(SEQ (enter i doorchan)

(OUT rchan ’req) (OUT lchan ’req)
(eat i)
(OUT rchan ’free) (OUT lchan ’free)
(leave i doorchan))

(philosophize i lchan rchan doorchan))

(defun enter (i doorchan)
(OUT doorchan ’enter)
(IN doorchan))

(defun leave (i doorchan)
(OUT doorchan ’leave))

(defun doorman (chans)
(doorman-aux ready-chans live-chans 0))

(defun doorman-aux (ready live-chans i)
(IN-FROM

(chan req)
live-chans ;;get a request
(cond
((eq req ’enter) ;;enter?
(cond
((= i (- n-phil 1)) ;;n-phil is the number of philosophers
(doorman-aux chan (delete! chan live-chans) i))

(t (OUT chan ’ok) ;;no problem...
(doorman-aux ready live-chans (+ i 1)))))

((eq req ’leave)
(cond
(ready ;;someone waiting?
(OUT ready ’ok)
(doorman-aux nil cons ready live-chans) i))

(t (doorman-aux ready live-chans (- i 1)))))))

(defun fork-task (lchan rchan)
(let ((dummy nil)) ;;get grab+then wait for release

(ALT ((IN lchan dummy) (IN lchan dummy))
((IN rchan dummy) (IN rchan dummy))))

(fork-task lchan rchan))



22 BERRINGTON ET AL

;;Initialisation — First construct the channels, then call the
;;main functions with a connected end of the channel.
(defun doit (n)

(let ((left-channels (map make-Chan-Pair (make-vector n)))
(right-channels (map make-Chan-Pair (make-vector n)))
(doorman-chans (map make-Chan-Pair (make-vector n))))

(PAR
(FOR (i 0) (< i n) (++ i)
(SEQ (init-phil i)

(philosophize i
(connect-chan-pair (element left-channels i))
(connect-chan-pair (element right-channels i))
(connect-chan-pair (element doorman-chans i)))))

(FOR (i 0) (< i n) (++ i)
(fork-task (connect-chan-pair (element left-channels i))

(connect-chan-pair (element right-channels
(remainder (+ i 1) n))))))

(doorman (map connect-chan-pair doorman-chans) n)))


